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1. INTRODUCTION

Numerical solutions of large-scale engineering or scientific problems require

extensive computations on computers with conventional architectures. Even with

today's fast-advancing computer technology, it appears that the speed of sequential

machines is gradually approaching its limit. Perhaps parallel computation is the ulti-

mate solution for the next generation computers. One unique feature of these machines

is that they do not rely on exceptionally fast processors, but on a large number of rela-

tively simple processing units. Thus, the increase in speed is achieved by increasing

the number of processors in conjunction with appropriate parallel algorithms. Obvi-

ously, the speed of a parallel computer is achieved by performing multitask operations

in a collective form, rather than sequentially.

Problems of obvious interest for parallel processing because of their computa-

tional intensity include Matrix Computation, Computer Vision, Image Processing, Fin-

ite Element Analyses, Signal Processing, Simulation, Optimization, etc. As an example,

Finite Element method widely is used in material analyses in civil and mechanical

engineering. Usually the computation is not trivial due to the complexity and !arge

number of elements.

Parallel processors fall mainly into two general classes. One class is of Single

Instruction Multiple Data(SIMD) architecture. Another is of Multiple Instruction Mul-

tiple Data architecture. SIMD has many elementary processors(>1000). It is data level

parallelism, that is, assigning a processor to a data unit. Typically its memory is dis-

tributed and a potential problem is communication speed limit. On the other hand,

MIMD has a few powerful processors(<1000). It is control level parallelism, that is,

assigning a processor to a unit of code. Typically its memory is shared and a potential

problem is memory speed limit. In summary, all processors of SIMD are given the

same instruction and each processor operates on different data. On the other hand,
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each processor of MIMD runs its own instruction sequence and each processor works

on a different part of problem.

The choice between SIMD and MIMD depends on the application[2]. For well-

structured problems with regular patterns of control, SI:MD machines have the edge,

because more of the hardware is devoted to operations on the data. For the applica-

tions in which the control flow required of each processing element is complex and

data dependent, MIMD architecture has the advantage.

This project is for application of parallel computations related with respect to

material analyses. Briefly speaking, we analyze some kind of material by elements

computations. We call an element a cell here. A cell is divided into a number of

subelements called subcells and all subcells in a cell have the identical structure. The

detailed structure will be given later in this paper. It is obvious that the problem is

"well-structured". SIMD machine would be a better choice. In this paper we try to

look into the potentials of SIMD machine in dealing with finite element computation

by developing appropriate algorithms on MasPar, a SIMD parallel machine. In section

2, the architecture of MasPar will be discussed. A brief review of the parallel program-

ming language MPL also is given in that section. In section 3, some general parallel

algorithms which might be useful to the project will be proposed. And, combining with

the algorithms, some features of MPL will be discussed in more detail. In section 4,

the computational structure of cell/subcell model will be given. The idea of designing

the parallel algorithm for the model will be demonstrated. Finally in section 5, a sum-

mary will be given.

2. MASPAR MACHINE ARCHITECTURE AND MASPAR PROGRAMMING

LANGUAGE (MPL) ,,

MasPar parallel processing system is of the SIMD architecture. It consists of a

front end(FE) and a Data Parallel Unit(DPU).

The front end includes a workstation that runs an implementation of the UNIX

operating system and standard UO. At present, the front end is a DECstation 5000 with

Ultrix operating system.

The DPU consists of an Array Control Unit(ACU), an array of Processor

Elements(PEs), and PE communication mechanisms. Figure 2-1 is the system

diagram.
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The ACU is a processor with its own registers and data and instruction memory.

It has up to 22 32-bit registers available for user-declared register variables, 128

KBytes of data memory and 1 MByte of RAM of virtual instruction memory. It con-

trois the PE array and performs operations on singular data. The ACU sends data and

instructions to each PE simultaneously.

Each PE is a 4-bit load/store arithmetic processing element with dedicated regis-

ters and RAM. Each PE has 40 32-bit registers, up to 33 of which are available for

user-declared register variables. Each PE has 16 KBytes( 64 KBytes as optional) of

RAM. Each PE receives the same instruction on variable that reside on the PEs. In

MPL, any variable that is declared as a PE variable is replicated exactly, except for its

value, in every PE.

The array of PEs is divided into non-overlapping square matrix of 16 PEs. These

square matrices are called PE clusters. PE clusters are used by the MPL language con-

structs and library routines that are involved with Global Router PE communications(

for example, router and connected()). The system can communicate with all PE clus-

ters simultaneously, but it can communicate with only one PE per cluster at one time.

At most one outgoing communication connection and one incoming communication

connection can be made per cluster at one time.

There are three kind of communications, that is, communication between the front

end and the DPU, communication between the ACU and the PE, and communication

among the PEs.

Communication between the front end and the DPU is needed sometimes. One

reason is that the DPU memory is very limited compared with the front end. Therefore

it can not accommodate very big programs. Another reason is that the DPU is less

efficient than the front end in dealing with certain operations because the processors of

DPU are 4-bits only. A good example is that the DPU is much slower than the front

end in doing power operation(0.007s vs. 0.000003s). The third reason is that the front

end has a very abundant library, some of which DPU can not support. So appropriate

programming model would be generating both front end code and DPU code and Exe-

cuting them interactively. The communication between FE and DPU is done through

the queues or DMA, where the DMA manner is a new feature supplied with the Sys-

tem Software V3.2. The DMA is faster than the queue. For example, in a experiment

of transfer 4096 double precision numbers from FE to PEs, the time with queue is

0.054 seconds, while the time with DMA is 0.0068 seconds.
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The communicationbetweenACU and PEsis achievedby broadcastingnetwork

and OR-Reductionnetwork. The broadcastingnetwork allows data to be broadcast

from the ACU to all PEs.The OR-Reductionnetwork providesa booleanlogical OR

reductionnetwork that enablesglobal PE dataconditionsto beeasilydetected.

MasPar provides two mechanismsto implementcommunicationbetweenPEs.

They areX-Net and global routernetwork. X-Net allow selectedPEsto movedata to

a neighboringPE, onebit per clock cycle. X-Net communicationbetweenanyPE and

any otherPE lies on a straightline from the original PE in one of the eight directions,

asseenin Figure 2-2. It shouldbe awarethat during onecommunication,the direction
and the distanceis uniquefor anyactivePEs. GlobalRouter Communicationmakesit

possibleto communicatebetweenany particularPE and the membersof an arbitrary
subsetof PEs simultaneously. It transmitsdata in bit-serial format, one bit per clock

cycle.

MasParprovideparallelprocessingresources.How to useit, however,dependson

how usersare interactingwith it. Userscanuse high-level languagessuchasMasPar
Fortran, a modified Fortran90. In this case,onesourcedrives all partsand the com-

piler managesinteractions.These languagesautomaticallygeneratetwo cooperating

piecesof code:one for theFE and onefor the DPU. Therefore,the PEsandcommuni-
cation networks are transparentto users.Alternatively, Users can use lower-level

languages.In this case,there is one sourcefor the DPU and one sourcefor the FE.
The programmerexplicitly managesthe DPU-FE interactionsby meansof subroutine
calls that communicatebetween the two sourceprograms.One of such lower-level

languagesis MasParProgrammingLanguage(MPL).

The MPL is the lowest level(most efficient and most flexible) programming

languagethat MasParsupports. The purposeof MPL is to program the DPU. Use

MPL to recodethe appropriatepartsof existingapplicationsto executein a dataparal-

lel way. And the front endprogramcalls theseMPL subroutines.

MPL is basedon ANSI C. In addition,statements,keyword and library functions

havebeenaddedto supportdataparallelprogramming.MPL extensionsinclude:

* A new keyword, plural, distinguishesbetweentwo independent

addressspaces.Variablesdefinedusingthekeywordplural are
allocatedidentically oneachPEin thePE array.Variablesdefined

without using thekeywordplural aresingularvariablesandare
locatedon the ACU.
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* Plural expressionsaresupported.All arithmeticandaddressing

operationsdefinedin ANSI C aresupportedfor plural datatypes.

* SIMD control statementsemanticsareimplemented.

* Dynamic autoarraysare implemented.Theseallow you to

developfunctionsthatcan run on anysizeof DPU.

An important conceptin SIMD programmingis theconceptof the activeset.The

activeset is the set of PEsthat is enabledat anygiven time during execution.This set

is defined by conditional tests in user's program.Plural data operationsin an MPL

programapply uniformly to all activePEs.

With MPL, a programmercan accessany PEs and directly usecommunication

mechanicsmentionedearlier in this section.For example,you can accessa PE by

using theconstructproc, you can implementcommunicationbetweenanyPEsby using

the construct router, you can copy a variable in one PE to the PEs along a certain

direction by using the construct xnetc. All thesegreatly facilitate programmersin

parallel programmingand make it possibleto developmost efficient applicationpro-

grams.

On the other hand,high-level languagessuchas MasParFortranuse the parallel

resourcesautomatically.And, the compilershavebeenhighly developed.Nevertheless,

Thesecompilersaregeneral-purposeones.They may not be smartenoughto optimize
all code compiled by them. Thus, it is logical to assertthat with the help of MPL, a

programmermay developmoreefficient codefor someapplicationif the applicationis

appropriateto parallel processingandthe programmercan reasonablydesignthe pro-

gramand greatly utilize MPL. More detailswill begivenin thefollowing sections.
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Figure 2-1 MasPar system block diagram

from "MasPar Overview and MPPE Manuals"
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Figure 2-2 Eight x-net directions

from "MasPar M--_L Manuals"
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3. IMPLEMENTATION OF GENERAL PARALLEL ALGORITHMS ON

MASPAR

Some algorithms are commonly used in parallel processing. In this section, some

of these algorithms are introduced and implemented on MasPar. They are estimated in

terms of time efficiency. We also try to compare communication mechanisms supplied

by MasPar.

One of the algorithms is Computing All Sums[3]. Assume that each processor Pi

holds in its local memory a number a i, l_<i<_N. It is often useful to compute, for each

Pi, the sum a l+a 2+...+ai. It can be shown that using the following algorithm the sum

of N numbers is computed in O(log N) time instead of O(N) time. The idea is to keep

as many processors busy as long as possible and exploit the associativity of the addi-

tion operation.

Algorithm 1: AllSums

for i=0 to logN-1 do

for i=2J+l to N do in parallel

Processor Pi

(i) obtains ai_2_ from Pi-zJ and

(2) replaces a i with ai_zi+a i.

end for

end for.

The working of AllSums is illustrated in Figure 3-1 for N=8 with Aij referring to the

sum ai+ai+l+...+aj. When the procedure terminates, a i has been replaced by

al+a2+...+ai in the local memory of Pi, for l<i<_N. ,

It is not difficult to extend Algorithm 1 so that it can sum up NxN numbers

located in PE array in O(21ogN) instead of O(N2).

In Algorithm AllSums, each PE repeatly takes two actions, getting a number from

other PE and adding the fetched number to its local number. The first action deals

with communication between PEs. It is obvious a good communication scheme will

make the algorithm efficient. In List 3-1, several communication approaches are used

and are compared in terms of execution time. This program performs sum of integer

numbers located in a portion of the PE array with different distances. The distance

between two PEs refers to the minimum number of steps from one PE to the other.
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List 3-1 Implementationsof AllSums

/* Using different communication schemes to perform AllSums */

#include <mpl.h>

#include <stdio.h>

#include <math.h>

extem double dpuTimerElapsed0;

extern void dpuTimerStart();

void p_printf0;

main()

{

int x_end, y_end,x_dist, y_dist, x_num, y_num, log_x_num, log_y_num;

int x_start, y_start;

plural x_ndx, y_ndx;

plural int src, dest;

int i,j,k;

plural int target,activeSet;

double et;

printf("x_dist ? "), scanf("%d",&x_dist);

printf("y_dist ? "), scanff"%d",&y_dist);

printf("x_start ? "), scanf(" %d",&x_start);

prinff("y_start ? "), scanf(" %d",&y_start);

printf("x_end ?"), scanf("%d",&x_end);

printf("y_end ?"), scanf("%d",&y_end);

if(x_start<0 II y_start<0 II

x_start>=nxproc I[ y_start>=nyproc){

return;

]

x_num=(x_end-x_start+l)/x_dist;

if((x_end-x_start+ 1)%x_dist)

x num++;

y_num=(y_end-y_start+ 1)/y_dist;

if( (y_end-y start+ 1)% y_dist)
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y_num++;

log_x_num=log(xnum)/log(2);

log_y_num=log(y num)/log(2);

x ndx=-1;

y_ndx=- 1;

if(ixproc>=x_start && iyproc>=y_start &&

ixproc<=x_end && iyproc<=y_end &&!

((ixproc-x_start)%x_dist) && !((iyproc-y_start)%y_dist)){

x_ndx=(ixproc-x_start)/x_dist;

y_ndx=(iyproc-y_start)/y_dist;

}

/* xnet */

src=l;

/* x-direction */

dpuTimerStart0;

k=l;

for(j=0;j<log_x_num;j ++) {

if(x_ndx>=k && x_ndx<x_num){

src+=xnetW[k*x_dist].src;

}

k*=2;

}

/* y-direction */

k=l;

for(j =0 ;j<log y_num ;j ++) {

if(y_ndx>=k && y_ndx<y_num){

src+=xnetN[k*y dist] .src;

}

k*=2;

}

et=dpuTimerEIapsed0;

/* router */
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src=1;

dest=0;

all acfiveSet=0;

if(

ixproc>=x_start && ixproc<=x_end && !((ixproc-x_start)%x_dist) &&

iyproc>=y_start && iyproc<=y_end && !((iyproc-y_start)%y_dist))

activeSet=l ;

target=nxproc*y_start+x_start;

routerCount=0;

dpuTimerStart0;

while(activeSet) {

if(connected(target)){

router[target].dest+=src;

activeSet=0;

}

}

et=dpuTimerElapsed0;

/* sendwith */

src=l;

dest=0;

all activeSet=0;

if(

ixproc>=x_start && ixproc<=x_end && !((ixproc-x_start)%x_dist) &&

iyproc>=y_start && iyproc<=y_end && !((iyproc-y_start)%y_dist))

activeSet= 1;

target=nxproc*y_start+x_start;

dpuTimerStart0;

if(activeSet)

dest=sendwithAdd32(src, target);

et=dpuTimerElapsed0;

/* sequential */

src=l;

dest=0;

dpuTimerStart0;



-12-

for(j=y_start;j<--y_end:j+=y_dist)

for(i--x_start;i<=x_end;i+=x_dist)

proc[y_start][x_start].dest+=proc[j][i].src;
et=dpuTimerElapsed0;

In this programxnet constructfamily is usedto implementAllSums. The xnet
constructsallow eachactivePE to communicatewith a PE that is a uniform distance

and direction from theactivePE.The syntaxof anxnet constructis:

xnet[singular_expression].plural_expression

wherexnet is one of the keywordslisted in Table 3-1. One memberof xnet family is

plain access,which communicatebetweenthe active set and connectedto set without

affecting any other PEs. The pipe constructsattempt to communicatebetween the

active set and the connectedto set, but if there is any active set along the pipeline

betweenthe two PEs that are attemptingto communicate,then the communicationis

broken. The pipe constructsgenerallyare faster than the plain accessconstructs.For
more information aboutthe timing featuresseeMasParprogrammingLanguage(MPL)

User Guide. The copy constructswork the sameway the pipe constructswork except

that the value being communicatedis depositedin each PE along the pipeline.

Singular_expressionis an integerexpressionthat gives the distancebetweenthe active

andthe connectedto PEs.Plural_expressionis a variableor expressionthat is accessed

in eachconnectedto PE. The plural_expressionmustbe a basictype; it cannot be an
aggregatesuch as a structureor union or a whole array.To compensatethis limit,

MPL suppliesxfetch and xsendlibrary routineswhich are capableof transferringany

bytes of databetweenthe active and the connectedto PEs.Another importantfeaure
of theselibrary routinesthat the xnetconstructsarenot of is that the directionof com-
munication is not limited to the eight directions.However this gain is in the cost of

execution time. List 3-2 is an exampleof using the two communicationmechanics.

In this example,an integer is transferredfrom the active PEs and the connectedto
PEs. the execution time are 0.000037secondsand 0.015142secondswith the xnet

constructand the xsendroutine,respectively.

Table 3-1 xnet Keywords

Plain Access Copy Pipe
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xnetN xntecN xnetpN

xnetNE xnetcNE xnetpNE

xnetE xnetcE xnetpE

xnetSE xnetcSE xnetpSE

xnetS xnetcS xnetpS

xnetSW xnetcSW xnetpSW

xnetW xnetcW xnetpW

xnetNW xnetcNW xnetpNW

List 3-2 Comparison between xnet construct and xsend routines

/* compare xnet and xsend */

#include <mpl.h>

#include <stdio.h>

extem double dpuTimerElapsed0;

extem void dpuTimerStart0;

main()

{

int step;

plural int i, j;

int dx, dy, nbytes;

double et;

/* xnet */

step=3;

dpuTimerStart0;

xnetSE[stepl.j=i;

et=dpuTimerElapsed0;

printf("time(xnet)= %f0,et);

/* xsend */

dy=-3;

dx=3;

nbytes=sizeof(i);
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dpuTimerStart0;

ss_xsend(dy,dx,&i,&j,nbytes);

et=dpuTimerElapsed0;

printfCtime(xsend)=%f0,et);

Router is anotherconstructthat MPL supplies.As mentionedearlier in this section,
router constructallows eachactive PE to communicatewith any otherPE in an arbi-

trary way. The syntaxof a router constructis:

router[plural_index_expression].plural_expression

where plural_index_expression specifies which PE wants to connect to.

Plural_expressionis a variableor expressionthat is evaluatedin eachconnectedto PE.

Like the plural_expressionin the xnet constructs,it must be basic type. MPL suplies
the rsend and rsendlibrary routines which are capableof transferring any bytes of
data. The router constructis much more flexible than the xnet construct. However,

The performanceof the router constructgreatly dependson the numberof collisions.
A collision occurswhenmore than one activePEs attemptto accessthe PEs in one

cluster. In this case,the activePEswill be waiting in line for access.A randomcom-

munication patternwith all PEs participatingtakesan averageof 5000clocks for 32-

bit operands,while a left-hand side(LHS) xnet[] operationon 32-bit operandstakes

34*dist+6 where dist>l is the distancebetweencommunicatingPEs.For more infor-

mation, pleaseseeMasParProgrammingLanguage(MPL)User Guide. By comparing
betweenthe router constructand the xnetconstructswe concludethat if an application

programming needsmuch flexibility, we would prefer the router construct; if the
emphasisis on timing and we can reasonablyarrangethe PE arrays, the xnet 'con-

structsis advantageous.

The program in List 3-1 also appliesa parallel primitive routinessendwith. The

syntax of a sendwith routine is:

sendwith(plural src, plural dest_pe);

where src is a plural variable whose value is to be sent and dest pe is the destination

PE for src for each active PE. For each PE in the active set, the sendwith routines

return the sum, AND, maximum, minimum, product, or OR of all values of src that
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were sent to that PE.The differencebetweenthe sendwithroutinesand therouter con-

struct is that with the router constructsubsequentsendsto the samedestinationPE
overwrite eachother; with the sendwith routinesall sendsto the samedestinationare

combined.

For the sakeof comparisonbetweenparallelprocessingand sequentialprocessing

theproc constructwasused.The proc constructallowsuser to accessa singlevariable

on a single PE, or it allows you to evaluatean expressionon a singlePE.The syntax

of theproc constructis:

proc[singularexpression].plural_expression

or

proc[singular_expression] [singular_expression] .plural_expression

where singular_expression is an integer expression used to index the PE array. In the

one-dimensional case, the singular_expression is the linear PE index. In the two-

dimensional case, the first singular_expression is the PE row index and the second

singular expression is the PE column index. Plural_expression is a variable or expres-

sion that is accessed in the indexed PE.

Table 3-2 shows the execution time to perform Algorithm AllSums with different

communication approaches given different distances and numbers of PEs. Figure 3-2 is

the plot of time vs number of PEs with the distance of one. Observing Table 3-2 and

Figure 3-2, we can find that when the number of PEs is small, the router construct,

even the sequential approach with the proc construct is superior over the xnet con-

struct. This is because, on one hand, fewer collision occurred to router construct. On

the other hand, for the xnet approach, the computing steps are not economical for the

small number of PEs. However, as the number of PEs increases, the increase of execu-

tion time with the router construct is much faster than that of the xnet approach. Same

thing is true for the proc construct.
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Table 3-2 Execution Time with Different Communication Schemes

time(second)distances start end

x y x y x y

1 1 0 0 1 1 .005770

1 1 0 0 3 3 .005892

1 1 0 0 7 7 .005849

1 1 0 0 15 15 .005992

1 1 0 0 31 31 .006280

1 1 0 0 63 63 .006449

2 2 0 0 1 1 .005630

2 2 0 0 3 3 .006137

2 2 0 0 7 7 .005826

2 2 0 0 15 15 .005955

2 2 0 0 31 31 .006148

2 2 0 0 63 63 .006505

4 4 0 0 1 1 .009420

4 4 0 0 3 3 .005627

4 4 0 0 7 7 .005796

xnet router sendwith sequential

.000391

.001505

.005961

.023782

.095068

.380211

.000113

.000393

.001505

.005961

.023782

.095067

.000112

.000112

.000391

.014771

.014928

.014931

.015341

.016108

.015414

.014560

.014840

.014878

.014724

.015051

.015073

.014828

.014579

.014661

.000182

.000675

.002607

.010336

.041022

.163509

.00O057

.000184

.000672

.002607

.010336

.041026

.000058

.000058

.000182

It is important to note that Algorithm AllSums can be modified to solve any prob-

lem where the addition operation is replaced by any other associative binary operation.

Furthermore, the idea of this algorithm can be applied to general parallel programming

design other than merely binary numerical accumulations.

Finally in this section, some concepts regarding MPL language would be

clarified. The control statements in ANSI C, such as if, while and switch, are

expanded to handle plural variables and expressions. They are very helpful in parallel

programming. But don't consider the branches in these control statements are per-

formed parallelly. For example, in the conditional statement

if (expression) statement block 1

else statement block 2

the block 1 and the block 2 are performed in serial. Another feature that MPL provides

is the plural pointers. There are four kind of pointers in MPL: singular pointer pointing
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to singular data, singular pointer pointing to plural data, plural pointer pointing to

singulardataand plural pointerpointing to plural data.Thesepointersgreatlyfacilitate

memory accessing,but this gain is in the cost of time efficiency due to the compli-

catedpointer manipulation.
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4. PARALLEL PROGRAMMING FOR MATERIAL ANALYSIS

There are some common themes to any data parallel programming. Let us see a

simple example of parallel programming first. Suppose we want to perform the addi-

tion of two matrices and compute the trace of the resulting matrix. First, we should

choose appropriate representation on parallel machine. On serial machine, a matrix is

represented in a two-dimensional array. On parallel machine, a natural representation

for the matrix is to assign each element of the matrix to a uniform variable in a PE.

After determining the data structure, we should figure out how to do the addition and

trace computation. The addition easily is performed by adding the two variables

representing the elements of two matrices in all involved PEs parallelly and assign the

result to a new variable. Then, to perform trace computation, sum up the new variable

on some PEs that represent the diagonal elements of the new matrix by using some

sum algorithm(of course you can use Algorithm AllSums). The addition is done

locally in each PE, but in computing the trace, communication between PEs is needed.

This algorithm is partitioned into two tasks, ADDITION and TRACE. They are per-

formed with some subalgorithms. TRACE is dependent of ADDITION. With machines

of MIMD architecture, this two tasks may run concurrently, but some synchronization

mechanism may be needed. With SIMD machines, on the other hand, these two tasks

are done in order and there is no need for synchronization. Of course, we should not

forget to initialize PEs at the beginning.

Generally speaking, in performing a parallel processing, we need:

Establishing Parallel and/or scalar Data structures. Data parallel programs can be

expressed in terms of the same data structures used in serial programs. The difference

is that the individual elements of a composite data structure, such as an array, are

spread across PEs, so that each data element has an associated processor. Since each

PE has its own dedicated memory, the task of associating data elements with PEs is

simply the task of assigning memory locations across processors. In some cases, 'data

are scalar, thus they are declared and stored in the ACU or in the front end.

Establishing Linkages Among Data Elements. During the execution of a program,

data from different problem elements are used together. The linkages among them are

mainly via communications. Sometimes the pointers and subscripts are subsidiary.

Synchronizing tasks. For SIMD machine, All active PEs follow an unique instruction

at any time. Thus synchronization of tasks does not pose any problems. Sometimes,

asynchronous computation within an algorithm is desired. For example, an variable in

one PE is dependent of an variable of another PE. In this case the first PE attempting

to evaluate the local variable has to wait until the variable in the second PE has been
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evaluated.This delay may be done by disabling the first PE.

The execution time of a parallel code mainly is spent on PE initialization, parallel

computing and communications. PE initialization is necessary, but it usually takes a

small portion of the execution time. Therefore designing a reasonable parallel comput-

ing schedule and using an appropriate communication schemes is critical for the time

efficiency of the program. It should be mentioned that the choices are very dependent

on applications and machines.

The program package we are working on is the one that models the mechanical

performance of materials, such as concrete constitution, with the aid of finite elements

method. Generally speaking, a material is characterized by a sequence of elements. By

computing some mechanical quantities, such as strain and stress on these elements, we

get the performances of this kind of materials. Here we call an element a cell. During

one execution, a sequence of cells, say 2000 cells, are computed. Each cell is divided

into nxn ( n=4 at present) subcells. These subcells have a uniform structure as the fol-

lowing:

entries 1 - 6: total strain;

entries 7 - 12: micro quantities (for Micromechanics Model);

entries 13 - 18: inelastic strain;

entries 19 - 30: state variables;

The original package was coded and run on machines of Von Neumann architec-

ture. A list of simplified execution steps are shown below:

1. user inputs parameters for the material to be analized

2. system initialization

3. history control adjustment for computing next cell

4. compute a cell, including computing subcells within the cell '

5. if the number of computed cells has not reached the limit, go to 3

6. end.

In sequential programming, a subcell is expressed by an one dimensional array of

size 30. A cell is expressed in the form of a subcell sequence. The computation is

done with two-layer iteration. In inner layer, the subcells of a cell are computed. In

outer layer, the cell sequence is computed.
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A. Developing Parallel Algorithm on DPU

Here, we will concentrate on finding appropriate parallel algorithms for comput-

ing subcells. As stated previously, subcells have the identical structure and are

independent of each other. This implies that the operations on each subcells are the

same. It is natural to assign one PE to a subcell and compute these subcells in parallel.

In order to show the power of parallel processing in computing the subcells, an experi-

ment was done. One PE was assigned to each subcell and the original sequential algo-

rithm was implemented without major modification. Each time a different number of

subcells were processed simultaneously. Table 4-1 shows the execution time with

different number of PEs. Figure 4-1 is the corresponding plot. By this experiment, we

can find that the more the PE in parallel computation, the faster the speed.

Table 4-1 comparison of execution time with different numbers of PEs in parallel

number of PEs time(second)

1 0.32

2 0.25

3 0.18

4 0.13

5 0.12

6 0.11

7 0.11

8 0.077

9 0.077

10 0.077

11 0.077

12 0.076

13 0.076

14 0.076

15 O.066

16 0.047

In the above experiment, the parallel processing between subcells was achieved.

the processing within a subcell, however, remained sequential. In fact, It is possible

that some quantities and intermediate variables within a subcell can be computed in

parallel. In order to demonstrate this possibility, a part of the original FORTRAN 77
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code,which deals with subcell computation,wasshownin List 4-1. In the code the

one-dimensionalarray SA of size 30 is the input and the one-dimensionalarrayDSA

of size 30 in the output. Thereare someintermediatearraysof size 6 each,such as

SS,S and R. Rationally, we attemptto assignthe elementsof thesearraysacrossthe

PEs.The total of PEsneededis 78. Looking into the code,however,we find it is pos-

sible to usefewer PEs. The arraySSactually is the duplicationof a trunk of the input
SA. Therefore it can be deleted without any problem. SA itself also is redundant, since

only SA(7) through SA(12) and SA(21) through SA(26) are used. And, for the output

DSA, only the elements DSA(13) through DSA(26) are computed, where DSA(13)

through DSA(18), DSA(21) through DSA(26) have uniform or almost uniform expres-

sions for each group. The elements of the array S have almost uniform expression and

are independent of each other. The elements of the array R have exactly uniform

expression and are independent. So parallel processing can be achieved within each of

these groups. Usually parallelism can not be achieved between groups, since they have

different expression and/or are data dependent.

List 4-1 FORTRAN Code(Sequential) for Computing a Subcell

C#######################################################################

SUBROUTINE BODNER(DSA,SA)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

PURPOSE: BODNER-PARTOM VISCOPLASTIC MODEL

NOTE: 1) IN THIS SUBROUTINE, [SA] AND [DSA] CONTAIN THE

"MICRO" QUANTITIES FOR ABOUDI'S MICROMECHANICS MODEL

2) ARRANGEMENT OF [DSA] & [SA] ARRAYS

VARIABLE LOCATION
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C

C

C

C

C

C

C
C

I STRAIN RATE (13-18)
I ...............................

112 "SLOTS" (18-30)

I FOR STATE VARIABLES

I

CALLED FROM: NPARM

C ......................................................................

C

C

C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

LOGICAL NDEBUG

COMMON/DEBUG/NDEBUG

COMMON/IOUN/DEBUG

include 'micro.inc'

include 'vpv.inc'

C OMMON/VPT/NVP(6,2),MATT(16)

include 'vpt.inc'

DIMENSION SS (6),S(6),R(6),DSA(30),SA(30)

C

C

C ..........................................

C SET-UP VISCOPLASTIC MATERIAL CONSTANTS

C ..........................................

C

IT=MATT(NM)

JS=NVP(IT,1)

D0=VP(JS)

Z0=VP(JS+I)

Zl=VP(JS+2)

BM=VP(JS+3)

AN=VP(JS+4)

Q=VP(JS+5)

C
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C ................................

C COPY STRESS FROM [SA] TO [S]

C ................................

C

SS(1) = SA(7)

ss(2) = SA(8)

SS(3) = SA(9)

SS(4) = SA(10)

ss(5) = sa(11)

SS(6) = SA(12)

C

C ....................................................

C COMPUTE THE DEVIATORIC STRESS [S] IN THE SUBCELL

C ....................................................

C

TEMP = (SS(1) + SS(2) + SS(3))/3.

S(1) = SS(1) - TEMP

S(2) = SS(2) - TEMP

S(3) = SS(3) - TEMP

S(4) = SS(4)

s(5) = ss(5)

S(6) = SS(6)

C

C ............................................

C PREDICT THE AVERAGE PLASTIC STRAIN-RATE

C IN THE SUBCELL (BODNER)

C ............................................

C

AJ2=0.5"(S(1)*'2+S(2)*'2+S(3)*'2)+S(4)*'2+S(5)*'2+S(6)*'2

SQ3AJ = DSQRT( SS(1)*'2 + SS(2)*'2 + SS(3)*'2 +

& 2"(SS(4)*'2+SS(5)*'2+SS(6)*'2) )

SQ2=l.41JI215

IF(SQ3AJ.EQ.0.) THEN

CALL ZEROR(R,6)

ELSE

R(1) = SS(1)/SQ3AJ
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R(2) = SS(2)/SQ3AJ

R(3) = SS(3)/SQ3AJ

R(4) = SQ2*SS(4)/SQ3AJ

R(5) = SQ2*SS(5)/SQ3AJ

R(6) = SQ2*SS(6)/SQ3AJ
ENDIF

C

C ............................................

C IF D0=0 THEN ASSUME ELASTIC AND ZERO-OUT

C [DSA] AND RETURN

C ............................................

C

IF(D0.EQ.0) THEN

DO 100 JJ=l,30

DSA(JJ) = 0.0

100 CONTINUE

RETURN

ELSE

ZEF = Z0 + Q*SA(20) +

(1-Q)*(R(1)*SA(21)+R(2)*SA(22)+R(3)*SA(23)+

R(4)*SA(24)+R(5)*SA(25)+R(6)*SA(26))

&

&

C

IF(AJ2 .EQ. 0.) THEN

AL=0.0

ELSE

ARG 1=ZEF* *2.0/(3. *A J2)

IF(ARG1.GT. 1E6) ARGI=IE6

CON=.5*(AN+I.)/AN

ARG=CON*(ARG 1)**AN

IF (ARG.GT.50.) ARG=50.

AL=D0/(DEXP(ARG)*DSQRT(AJ2))

ENDIF

C

C ..........................

C INELASTIC STRAIN RATES

C ..........................
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C

DSA(13) = Ag*S(1)

DSA(14) = AL*S(2)

DSA(15) = AL*S(3)

DSA(16) = 2*AL*S(4)

DSA(17) = 2*AL*S(5)

DSA(18) = 2*AL*S(6)

C

C .....................

C PLASTIC-WORK RATE

C .....................

C

WPD - S(1)*DSA(13) + S(2)*DSA(14) + S(3)*DSA(15) +

& S(4)*DSA(16) + S(5)*DSA(17) + S(6)*DSA(18)

C

C ........................

C STATE VARIABLE RATES

C ........................

C

DSA(19) = WPD

Z0M=BM/Z0

ZD=Z0M*(Zl-ZEF)*WPD

DSA(20)=ZD

DSA(21)=ZD*R(1)

DSA(22)=ZD*R(2)

DSA(23)=ZD*R(3)

DSA(24)=ZD*R(4)

DSA(25)=ZD*R(5)

DSA(26)=ZD*R(6)

ENDIF

RETURN

END

There are some intermediate variables, such as AJ2, SQ3Aj and ZEF. The expres-

sions associated with these variables are in the form of crU*V. Instead of computing

the formula sequentially, Algorithm AllSums, developed in Section 3, is applied. These
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variablescan be evaluatedin parallel if they are independentof eachother,otherwise

they areevaluatedsequentially.

In our programmingwe mainly usethe x-net constructsto conductcommunica-

tions due to their steadilyfast speed.Besidesthe distance,a factor that may affect the

communicationefficiency is the permutationof PEs.The codein List 4-2 tries to sum

up the numberslocatedin a groupof PEswith differentpermutationsindicatedin Fig-

ure 4-2. Table4-2 showsthe processingtime with eachpermutation.The 2-SQRstyle

is the best. As mentioned earlier in this section, some PEs are assigned to perform

uniform operations and the data on them are independent, hence, they can work in

parallel. We call the set of these PEs a parallel PE group. Note that the sizes of paral-

lel PE groups in our program are all six. Also note that at sometime, some groups can

work in parallel. Based on this definition, we can estimate the total PEs needed in a

program. Let M denote the size of the parallel group which is the biggest of all the

groups, and N denote the maximum number of parallel groups that may work in paral-

lel at some time throughout the execution of the program. Then, the minimum number

of PEs that should be employed is M*N. In other word, If we use fewer PEs than this

number, we would get a longer processing time. In our program, the sizes of all

groups equally are 6. The maximum number of groups that can work in parallel is

2(remember the groups for computing A J2 and SQ3Aj). Thus the minimum number

of PEs needed is 12 for each subcell. There are 16 subcells in a cell. Thus, the

minimum number of PEs needed to process one cell is 192.

List 4-2 code for computing AllSums using x-net constructs with different PE

permutations

#define SECTION LENGTH 8

#define LOG SECTION LENGTH 3

main()

{

int i,j,k;

double dpu_t;

plural double src, dest;

/*I-D */

dpuTimerStart0;

if(within_sec_ndx<6)
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src=(plural double)within_sec_ndx;
else

src=0;

k=l ;

for(j=0;j<LOG_SECTION_LENGTH;j++){

if(within_sec_ndx>=k&& within_sec_ndx<SECTION_LENGTH){
src+=xnetW[k].src;

}

k*=2;

}

dpu_t=dpuTimerElapsed0;

/* 2-D */

dpuTimerStart();

src=(plural double)within_sec_ndx;

src--xnetNW[ 1].src+xnetN[ 1].src+xnetNE[ 1] .src;

src+=xnetE[3].src;

dpu_t=dpuTimerElapsed0;

/* circle */

dpuTimerStart0;

src=(plural double) (row_ndx*3+within_sec_ndx);

if(active) {

src+=xnetNW[ 1].src+xnetN[ 1].src+xnetNE[ 1]. src+

xnetW[1].src+xnetE[1].src;

}

dpu_t=dpuTimerElapsed 0;

/* 2-squares */

dpuTimerStart0;

src--(plural double)within_sec_ndx;

src+=xnetN[1].src;

src+=xnetE[ 1].src+xnetE[2].src;

dpu_t=dpuTimerElapsed0;

}
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Table 4-2 Processing Time with Different Permutation of PEs

1-D 2-D Circle 2-Square

.032128 .022023 .025813 .019231

Intuitively, the larger the number of PEs, the faster of the speed. Thus, we always

try to have as many as PEs working in parallel. Another point that should be men-

tioned here is the processing time also depends on communication schemes which in

turn affects the number of PEs to be used and their permutations. For example, After

performing communication with 2-SQR scheme, the accumulation value is only on PE

3(see Figure 4-2). Suppose the value is wanted by all the six PEs in the group, we

must broadcast it in two steps. First, transfer it to the south; and then, transfer it to the

east. If we add a row of three PE in bottom, as shown in Figure 4-2(e), only one

broadcast step(to the east) is needed. Thus time is saved in the cost of PEs.

We took advantages of MasPar architecture and MPL language, however, we

should avoid their limitations. For example, the power operation on DPU is much less

time-efficient comparing to that on the front end. Therefore it is better to replace

pow(x, 2) with x*x. The execution time of a plural power operation is 0.007261

seconds, compared to 0.000080 seconds of a multiplication operation.

The parallel algorithm for subcell computation is shown in List 4-3 . Using this

algorithm the execution time to compute a cell is 0.005486 seconds, 58 times faster

that that of the sequential algorithm running on DPU.

List 4-3 The MPL Code for Computing a cell

plural double d0=0, z0, zl, bm, an, q; /* used in BODNER */

plural int subcell_ndx;/* index to subcells */

plural int within sec ndx;/* order number within a section */

plural int sec_ndx;/* index to section within a subcell "1

int x_max, y_max;/* used to simulate PE arrays of different sizes*/

int rows_per_subcell; /* # rows for each subcell */

plural int row ndx; /* row index within each subcell */

plural

plural

plural

plural

plural

double coefO; /* for s */

double coefl; /* for aj2 and sq3aj (0.5, 1 and 2) */

double coef2; /* for sq2 (1 and 1.424215) */

double coef3; /* for dsa[12-17] (1 and 2) */

double sa6p, sa2Op,temp, sal9, arg, zd;
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plural active, active0,active1;

int bodner0

{

plural register double src, dest;

plural register double s, r=l;

plural register double zef=0, al=0;

plural register double argl, wpd;

register int i,j, k;

/* compute deviatoric stress s in each subcell */

s=sa6p-temp;

/* predict average plastic strain-rate in each subcell */

/* compute aj2 in 0th section, sq3aj in 1st sec. */

src=coefl *s's;

src+=xnetS[1].src;

if(active) {

src+=xne tEl 1].src+xnetE[2].src;

xnetcE[2].src=src;

}

if(src==O){

I"=-0; /* 1st sec */

al=O; /* Oth sec */

}

else{

dest=p_sqrt(src);

r=coef2*sa6p/dest;/*sa6p=sa[6+within_sec_ndx]*/

zef=r*sa20p;

zef+=xnetS [ 1].zef;

if(activel){

zef+=xnetE [1]. zef+xnetE[2], zef;

zef=sal9+(1-q)*zef;

/* transfer zef to 0th section where it is used to compute al */

xnetcW[SECTION_WIDTH].zef=zef;

}

arg 1=zef*zef/(3.0*src);
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arg*=p_pow((arg1<=1e6?arg1:1e6),an);

al=d0/(p_exp((arg<=50.?arg:50.))*dest);

/* inelastic strain rate */

dest=coef3*al*s;/* here in section 0 dest corresponds to dsa[12-17] */

wpd=s*dest;

/* accumulate src to get wpd */

wpd+=xnetS[1].wpd;

if(active0) {

wpd+=xnetE[ 1].wpd+xnetE[2].wpd;/*dsa[ 18] */

/* plastic-work rate */

/* state variable rate */

zd*=(zl-zef)*wpd;/* dsa[19] */

/* here dest is original zd. transfer it to 1st section to

compute dsa[20-25] */

xnetcE[SECTION_WIDTH].zd=zd;

}
zd*=r;

B. Comparison between the Front End and the DPU

Performance comparison between the FE and DPU is helpful in algorithm design

and task assignment. Table 4-3 shows some features of DECstation 5000 and the

DPU MP-1104.

Table 4-3 Some Features of DECstation 5000 and MP-1104

DECstation 5000 MP- 1104

Number of PEs

32-bit integer MIPS

32-bit floating point MFLOPS

64-bit floating point MFLOPS

1 4096

24 6400

7 300

4 138
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It should be noted that the MIPS of the DPU is the combinationof all the PEs.

For single PE on DPU, it is much lesspowerful than that of the front end. For exam-

ple, the 64-bit floating MIPS for single PE on DPU is 138/4096=0.034, about 119

times slower than that of the FE. The early example of power computation proved this

difference. On the other hand, the advantage of DPU over the front end is massive PEs

working together. The example in List 4-4 demonstrates this advantage. In the exam-

ple, we compute the sum of 4096 double precision numbers, and then each of these

number is divided by the sum plus another number. On the front end this is done by

two iterations, one for the sum, the other for the division. The execution time is

0.011718 seconds. On the DPU, this calculation is done just in two statements. The

execution time is 0.000385 seconds.

List 4-4 Arithmetic Operations on FE and DPU

#include <stdio.h>

#include <stdlib.h>

extern mpl_subO;

#define size 4096

double flyingMonkeys[size];

main()

{

double munckins[size];

double glinda, wickedWitch;

int i;

for(i=0;i<size;i++)

flyingMonkeys[i] =(double) i;

wickedWitch=l.23;

callRequest(mpl_sub, 20, &wickedWitch, &glinda, flyingMonkeys, munckins,&dpu_t);

/* pure FE */
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glinda=0;
for(i=0;i<size;i++)

glinda+=flyingMonkeys[i];
for(i=0;i<size;i++)

munckins[i]=flyingMonkeys[i]/glinda+wickedWitch;

}

/* This is the mpl routine */

#include <mpl.h>

visible mpl_sub0;

visible extern double flyingMonkeys[];

mpl_sub(fe_wickedWitch_p, fe_glinda_p, fe_flyingMonkeys_p,

fe_munckins_p, fe_dpu_t_p)

void *fe_wickedWitch_p;

void *fe_glinda_p;

void *fe_flyingMonkeys_p;

void *fe_munckins_p;

void *fe_dpu_t_p;

{

plural double munckins, Monkeys;

double glinda, wickedWitch;

copyIn(fe_wickedWitch_p, &wickedWitch, sizeof(wickedWitch));

blockIn(fe_flyingMonkeys_p, &Monkeys, O, O, nxproc, nyproc,

sizeof(Monkeys));

i

glinda=reduceAdd64(Monkeys);

munckins=Monkeys/glinda+wickedWitch;

copyOut(&glinda, fe_glinda__p, sizeof(glinda));

blockOut(&munckins, fe_munckins_p, 0, 0, nxproc, nyproc, sizeof(munckins));
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Another thing that can not be ignored in the example is its communication

expenseon transfering the numbersbetweenthe FE and the DPU. By including the

communication time, the total time with DPU is 0.089838 seconds. The communica-

tion is the bottle neck.

MasPar supplies several kinds of timers. Each for a different purpose:

1. dpuTimer: this is an MPL routine, although it can be called from MPF. It measures

DPU time only, and does not include the front-end. It is the finest grained timing rou-

tine, and measures time in increments of 80ns ticks. This timer is only good for

measuring up to 5 minutes and 43 seconds, after which it loops back round to zero.

2. mpTimer: this an MPF routine. It measures overall run time (FE+DPU). It is based

on the UNIX clock, and is quite coarse grained, and is not very accurate for timing

parallel code. It can be significantly affected by the workload on the front-end.

3. mpCpuTimer: can be called from MPL or MPF. It measures dpu time only, but

excludes job context switching time and I/O. It is accurate to approx 20ms, and wraps

around after 1193 hours.

It should also be pointed out that:

1. DPU time refers to the amount of time a program has been executing on the dpu,

and is the value printed in the RUNTIME field of mpq.

2. CPU time is similar to DPU time except that it excludes I/O time.

3. USER time is workstation terminology and refers to the amount of time actually

spent executing the user's code and excludes system cpu overheads. (The closest thing

to this on the MasPar is CPU time.)

4. REAL time is the elapsed or wall clock time. On the MasPar, this will include time

spent queuing for the dpu, and the time other jobs sharing the dpu in execution. It is

the WALLTIME field in mpstat, or the sum of the queuing time and the PMEMTIME

in mpq.

In addition to above routines, there are other time-related routines and system

calls, such as gettimeofday and clock. Practically, gettimeofday and clock are not very

useful for MasPar programs because they will be affected by other jobs which are

sharing the dpu.

Here is the guideline of using the timers for different purpose. If you want to

time small parallel sections of a Fortran program, then you should use the dpuTimer or

mpCpuTimer routines, which only record DPU cycles, dpuTimer is more accurate, but

mpCpuTimer can time longer intervals and is not affected by the design flaw in the

ACU. If you want to time the whole program (parallel+serial) parts, then you should

use the mpTimer routine, but be aware that the performance of the serial parts of your
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program will be affected by the load on the front-end, so you might want to arrange to

do your timings when the machine is relatively quiet.

The original code for this project was written in FORTRAN 77. Because the

MasPar machine does not a FORTRAN 77 compiler, some modifications in syntax and

data structure were made and the code was compiled with MasPar FORTRAN(MPF).

By default Mpfortran compiler automatically assign tasks to both FE and DPU.

MPF will use the DPU for parallel parts of the program (i.e. Fortran 90 constructs),

and the FE for the serial parts. However, You can force everything to be executed on

the FE by using the scalar compiler switch. This facilitates us to compare the execu-

tion time of each part of the program. Table 4-4 shows the times of MPL code, MPF

code runing purely on FE and MPF code runing on both the FE and the DPU.

Table 4-4 Processing Time for One Cell

MPL on DPU MPF on both FE and DPU MPF on FE only

0.005486 0.0054 0.0038
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Figure 4-2 X-net communications with different PE permutation styles
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5. SUMMARY

In the previous sections, we introduced the features of a parallel machine MasPar

and its parallel programming language MPL. Based on its features, we had developed

a parallel algorithm for the material analysis package.

Generally speaking, parallel processing can be divided into three parts: task

assignment, data operation and communications, i.e. 1) before starting programming,

we should make sure if the application fits for parallel programming and consequently,

we should figure out those parts that can be parallelly processed; 2) during program

execution, we should assign data to PEs and initialize these PEs and in fact an applica-

tion can not be processed in wholely parallel way due to data dependency, thus com-

munications among PEs are necessary.

In this project, we first concentrated on subcell computation because it is an ideal

candidate for parallel processing. Although, by comparison of the parallel algorithm

and the sequential one, we did not feel superiority of the parallel algorithm to its coun-

terpart. However, if we look into the problem deeply, we can find a positive answer,

i.e. 1) Our experiment on subcell computation was based on 16-subcell structure, and

in applications, the number of subcells in a cell may be far more than sixteen. Suppose

the number is 7x7, then for the sequential algorithm the processing time would be

three time longer than that for 4x4 structure. On the contrary, in parallel processing,

because the 49 subcells are independent of each other, computation time will be the

same as long as there are enough PEs. 2) In this paper we mainly worked on subcell

computation. Although it is hard to implement parallel processing in cell level due to

the correlation between cells, it is possible to implement it in partially parallel model.

One potential approach might be dividing the cell series into some subseries and pro-

cessing these subseries in parallel or pipeline. Of course that needs us to do more work

in algorithm design. 3) Currently, a single PE is much less powerful than the processor

of the front end. Suppose the 4-bit store/load PE convoluted to 32-bit (which is already

available), the processing speed will four times faster ideally. In summary, SIMD is

appropriate for material analysis and has a great potential for the development of paral-

lel algorithms.
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APPENDIX

MPL CODE FOR THE MATERIAL ANALYSIS PACKAGE



/* This function calculates inelasticity, it is called by*/

/* gcmp where it was implemented with a loop structure. */

/* Here two plural arrayes gjsigl[30] and gjdsig[30] */

/* were defined to express subcells. This function may */

/* calls bodner, model3m and model2m. */

**********************************************************

#include <mpl.h>

#include <math.h>

#include <time.h>

typedef struct { plural int *addr;

unsigned int rank;

unsigned int OnDpu;

unsigned int extent[7];

DopeVector;

/* the following structures except SUBCELL are

"common blocks" in FORTRAN code */

typedef struct { double *dsigal_p, dsigal[510];

double *sigal__p, sigal[510];

double *esp__p, esp[384];

}CELL;

corresponding

typedef struct ( int

iouble

int

int

int

int

int

int

int

int

±nt

int

} MICRO;

*matnum_p, matnum[4] [4];

*vf__p, vf;

*rlm__p, rim;

*ns__p, ns;

*nst_p, nst;

*nmt_io, nmt;

*nb__p, nb;

*ng_p, ng;

*idp__p, idp;

*nsfd_p, nsfd;

*lop__p, lop;

*ncmd__p, ncmd;

typedef struct { int *nvp__p, nvp[2][6];

int *matt_p, matt[16];

}VPT;

/* original NVP(6,2) */

typedef struct { double *vP__P, vp[50];

}VPV;

CELL cell_s_

MICRO micro_s;

VPT vpt_s;

VPV vpv_s;

int para trans(), cell_on_pe(), para_back_trans();

int bodner();

plural double sigl[30], dsigl[30]; /* subcel! */

plural double dO, z0, zl, bm, an, q; /* used in BODNER */

/* GCMPLOOPI(): transfers parameters and calls */

/* corresponding function to get cell's information */

GCMPLOOPl(fe_arg_blk, dpu_arg_blk)

void *fe_arg_blk[];

DopeVector *dpu_arg_blk[];

{
plural double sigl[30], dsigl[30]; /* subcell */



/* para. transfer */

para trans(fe arg blk, dpu arg blk, dsigl, sigl);

/* establish a cell and information associated with it on PE */

cell on pe(dsigl, sigl);

/* call constitutive model to get:

inelastic strain rate (EPS)

state variable rates */

switch(micro s.ncmd){

case 1 :

bodner(dsigl, sigl);

break;

case 2:

/* model3m(gjdsigl,

break;

case 3:

/* model2m(gjdsigl,

break;

}

gjsigl);*/

gjsigl) ;*/

/* cell inf. back-transfer */

para_back_trans(fe_arg_blk, dpu_arg_blk);

/* para_trans() : para. transfer from FORTRAN to MPL */

int para_trans(fe_par, dpu_par, dsigl, sigl)

void *fe_par[] ;

DopeVector *dpu par[];

plural double *dsig! *sigl;

{

DopeVector *Dopep;

/* duplicate pointers *

copyIn(&fe_par[l], &cell s.dsigal_p, sizeof(cell_s.dsigal_D));

copyIn(&fe__par[2], &cell s.sigal_lo, sizeof(cell_s.sigal p));

copyIn(&fe__par[3], &cell_s.esp__p, sizeof(cell_s.esp_D));

copyIn(&fe_par[4]

copyIn(&fe_par[5]

copyIn(&fe__par[6]

copyIn(&fe__par[7]

copyIn(&fe__oar[8]

copyIn(&fe_par[9]

copyIn(&fe__par[10

copyIn(&fe_oar[!l

copyIn(&fe__par[12

copyIn(&fe_par[13

copyIn(&fe__par[14

copyIn(&fe_par[15

copyIn(&fe_par[16]

copyIn(&fe_par[17],

&micro_s

&micro_s

&micro_s

&micro_s

&micro_s

.matnum__p, sizeof(micro_s.matnum__p));

.vf_p, sizeof(micro s.vf_p));

.nm__p, sizeof(micro s.nm_D));

.ns__p, sizeof(micro_s.ns_p));

.nst_!o, sizeof(micro_s.nst_p));

&micro_s.nmt__p, sizeof(micro_s.nmt__p));

&micro_s.nb__p, sizeof(micro_s.nb_p));

&mlcro_s.ng__D, sizeof(micro_s.ng_p));

&micro_s.idp_p, sizeof(micro_s.idp__p));

&micro_s.nsfd_p, sizeof(micro_s.nsfd_p));

&micro s.lop_p, sizeof(micro_s.lop_!o));

&mlcro_s.ncmd_p, sizeof(micro_s.ncmd_p));

&vpt_s.nvp_p, sizeof(vpt_s.nvp_p));

&vpt_s.matt_p, sizeof(vpt_s.matt_p));

copyIn(&fe__par[18], &vpv s.vp__p, sizeof(vpv_s.vl__p));

/* copy values */

copyIn(cell_s.dsigal_p, cell_s.dsigal, sizeof(cell_s.dsigal));

copyIn(cell_s.sigal__D, cell_s.sigal, sizeof(cell_s.sigal));

copyIn(cell_s.esp__p, cell_s.esp, sizeof(cell_s.esp));

copyIn(micro_s.matnum_p, micro_s.matnum, sizeof(micro_s.matnum));

copyIn(micro_s.vf_9, &micro s.vf, sizeof(micro_s.vf)};

copyIn(micro_s.nm__p, &micro_s.nm, sizeof(micro_s.nm));



copyIn
copyIn
copyIn
copyIn
copyIn
copyIn
copyIn
copyIn
copyIn

(mlcro_s.ns_p,
(mlcro_s.nst__p,
(m_cro_s.nmt__p,
(mlcro_s.nb_p,
(mlcro_s.ng__p,
(mlcro_s.idp_p,

&micro s.ns, sizeof(micro_s.ns));
&micro_s.nst, sizeof(micro_s.nst)
&micro_s.nmt, sizeof(micro_s.nmt)

&micro s.nb, sizeof(micro_s.nb));
&micro s.ng, sizeof(micro_s.ng));
&micro_s.idp, sizeof(micro_s.idp)

(mlcro_s.nsfd_p, &micro_s.nsfd, sizeof(micro_s.nsfd));
(mlcro_s.lop_p, &micro_s.lop, sizeof(micro_s.lop));
(mlcro_s.ncmd_p, &micro_s.ncmd, sizeof(micro_s.ncmd));

copyIn(vpt s.nvp__p, vpt_s.nvp, sizeof(vpt s.nvp));
copyIn(vpt s.matt_p, vpt_s.matt, sizeof(vpt s.matt));

copyIn(vpv_s.vp_p, vpv_s.vp, sizeof(vpv s.vp));
}

WWWWW*WWWWWWWWW*WWWWWWW*WW*WWWWW*WWWW*WWWW*WWWWWWWWWWWWW*/

/* para_back trans(): para. transfer from MPL to FORTRAN */

***********************************************************

int para_back_trans(fepar, dpupar)

void *fepar[];

DopeVector *dpupar[];

{
DopeVector *Dopep;

}

/* cell_on__pe(): establish a cell on PE */

int cell_on__pe(dsigl, sigl)

plural double *dsigl, *sigl;

{
int i,j,k,n,m,s,t;

micro_s.ns=micro_s.nb*micro_s.ng;

for(j=0; j<micro_s.nb; j++)

for(i:0; i<micro_s.ng; i++) {

n:micro_s.ng*j+i;

m:micro_s.matnum[i] [j];

t=v!Dt_s.matt[m-l];

s:vpt_s.nvp[0] [t-l];

* original NS */

/* original NM */

/* original IT */

/* original JS */

proc [n] .d0=vpv_s .vp [s-l] ;

proc [n] .zO=vpv_s.vp [s] ;

proc [n] .zl:vpv_s .vp [s+l] ;

proc [n] .bm=vpv_s.vp [s+2 ];

proc [n] .an=vpv_s.vp [s+3 ];

proc[n].q=vpv s.w[s+4];

for(k:0; k<30; k++){

proc[n].dsigl[k]:cell_s.dsigal[30*(n+l)+k];

proc[n].sigl[k]=cell_s.sigal[30*(n+l}+k];

}

/* bodner() : Bodner-Parton viscoplastic model */

/* I. sa[] and dsa[] contain the "micro" quantities */

/* 2. arrangement of dsa[] & sa[] arrays */

**********************************************************

int bodner(dsa, sa)

plural double *dsa, *sa;

{



plural double ss[6], s[6], r[6];

plural double temp, aj2, sq3aj,

plural double zOm, zd, con;

int i, j;

unsigned long t;

sq2, zef, al, argl, arg, wpd;

dpuTimerStart () ;

/* copy stress from sa

if(iproc < micro_s.ns){

ss[0]=sa[6];

ss[l]=sa[7] ;

ss[2]:sa[8] ;

ss[3]=sa[9] ;

ss[4]=sa[10] ;

ss[5]:sa[ll] ;

to s */

/* compute deviatoric stress s in each subcell

temp=(ss[0]+ss[l]+ss[2])/3. ;

s [0] :ss [0] -temp;

s[l]=ss[l]-temp;

s [2 ]=ss [2 ]-temp ;

s[3]=ss[3] ;

s [4] =ss [4] ;

s [5] =ss [5] ;

*/

/* predict average plastic strain-rate in each subcell *

aj2=0.5*(p__pOW(S[0],2)+p__DOW(S[I],2)+p-Dow(s[2],2))+

p__pow(s[3],2)+p__DOW(S[4],2)+P__DOW(S[5],2) ;

sq3aj :p_sqrt (p_loOW (ss [0] ,2) +p__DOW (SS [I] ,2) +p__pow(ss [2 ] ,2

2" (p_Dow(ss [3 ] ,2) +p__pow(ss [4] ,2) +p__pOW(SS [5] ,2

sq2:l. 414215 ;

+

));

/w

if(sq3aj =: 0.0) {

for (i:0 ;i<6 ;i++)

r[i] =0;

}
else{

r [0] =ss [0]/sq3aj ;

r [i] =ss [i] /sq3aj ;

r[2]=ss[2]/sq3aj;

r [3] =sq2*ss [3]/sq3aj ;

r [4] :sq2*ss [4]/sq3aj ;

r [5] :sq2*ss [5] /sq3aj ;

/* if d0=0 then assume elastic and zero-out dsa[]

if (dO == 0) {

for (i=0 ;i<30 ;i++)

dsa[i]=0;

return(0) ; */

}
else{

zef=z0+q*sa [19] +

(l-q) * (r[0] *sa [20] +r[l] *sa[21] +r[2] *sa [22] +
r[3]*sa[23]+r[4]*sa[24]+r[5]*sa[25]) ;

if(aj2 == 0.0) {

al=0.0;

}
else{

argl=p__pow(zef, 2.0) / (3.0*aj2) ;

if(argl > le6)

argl=le6;
con=0.5* (an+l. 0)/an;

arg=con*p_pow (argl, an );

if(arg > 50.)

and return */



arg:5 0.0 ;

al=d0/(p_exp (arg) *p_sqrt (aj2)

/* inelastic strain

dsa[12] :al*s[0] ;

dsa[13]=al*s[l] ;

dsa[14]=al*s[2] ;

dsa[15] =2*al*s [3] ;

dsa[16]=2*al*s[4] ;

dsa[17]=2*al*s[5] ;

rate */

/* plastic-work rate */

wpd:s [0] *dsa [12] +s [I] *dsa [13] +s [2] *dsa [14] +

s[3]*dsa[15]+s[4]*dsa[16]+s[5]*dsa[17];

/* state variable rate

dsa[18]=wpd;

z0m=bm/z0;

zd=z0m*(zl-zef)*wpd;

dsa[19]=zd;

dsa [20] =zd*r [0] ;

dsa[21] :zd*r[l] ;

dsa[22] =zd*r[2] ;

dsa[23]:zd*r[3] ;

dsa [24] :zd*r [4] ;

dsa[25]:zd*r[5] ;

}

}
t=dpuTimerTicks () ;

printf ("time (parallel)

for (i=0;i<5 ;i++) {

for (j:0; j<6; j++)

printf ("%el0 .3

printf("\n") ;

printf("\n");

= %f\n" t*dpuTimerConst());

", proc[3] .dsa[6*i+j]) ;


